Exercise 49

Find the horizontal and vertical asymptotes of each curve. If you have a graphing device, check your work by graphing the curve and estimating the asymptotes.

$$
y=\frac{2 x^{2}+x-1}{x^{2}+x-2}
$$

Solution

Calculate the limits as $x \rightarrow \pm \infty$ to determine the horizontal asymptote. In the second limit, make the substitution, $x=-u$, so that as $x \rightarrow-\infty, u \rightarrow \infty$.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{2 x^{2}+x-1}{x^{2}+x-2} & =\lim _{x \rightarrow \infty} \frac{2+\frac{1}{x}-\frac{1}{x^{2}}}{1+\frac{1}{x}-\frac{2}{x^{2}}}=\frac{2+0-0}{1+0-0}=2 \\
\lim _{x \rightarrow-\infty} \frac{2 x^{2}+x-1}{x^{2}+x-2} & =\lim _{u \rightarrow \infty} \frac{2(-u)^{2}+(-u)-1}{(-u)^{2}+(-u)-2} \\
& =\lim _{u \rightarrow \infty} \frac{2 u^{2}-u-1}{u^{2}-u-2} \\
& =\lim _{u \rightarrow \infty} \frac{2-\frac{1}{u}-\frac{1}{u^{2}}}{1-\frac{1}{u}-\frac{2}{u^{2}}} \\
& =\frac{2-0-0}{1-0-0} \\
& =2
\end{aligned}
$$

Therefore, the horizontal asymptote is $y=2$. The vertical asymptotes are found by setting what's in the denominator equal to zero and solving for x.

$$
\begin{gathered}
x^{2}+x-2=0 \\
(x+2)(x-1)=0 \\
x=-2 \quad \text { or } \quad x=1
\end{gathered}
$$

The function is graphed versus x below with the asymptotes labelled.

